SMAW – Shielded Metal Arc Welding - Welding Processes

Kailaji Alloy Industries

Consumable Electrode

Fusion Welding Processes

- GMAW Gas Metal Arc Welding
- SAW Submerged Arc Welding

Non-Consumable Electrode

GTAW – Gas Tungsten Arc Welding PAW – Plasma Arc Welding

High Energy Beam

Electron Beam Welding Laser Beam Welding

SMAW – Shielded Metal Arc Welding

Kailaji Alloy Industries

- Consumable electrode
- Flux coated rod
- Flux produces protective gas around weld pool
- Slag keeps oxygen off weld bead during cooling

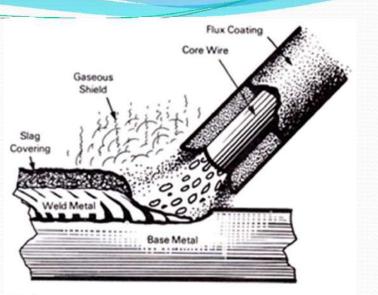
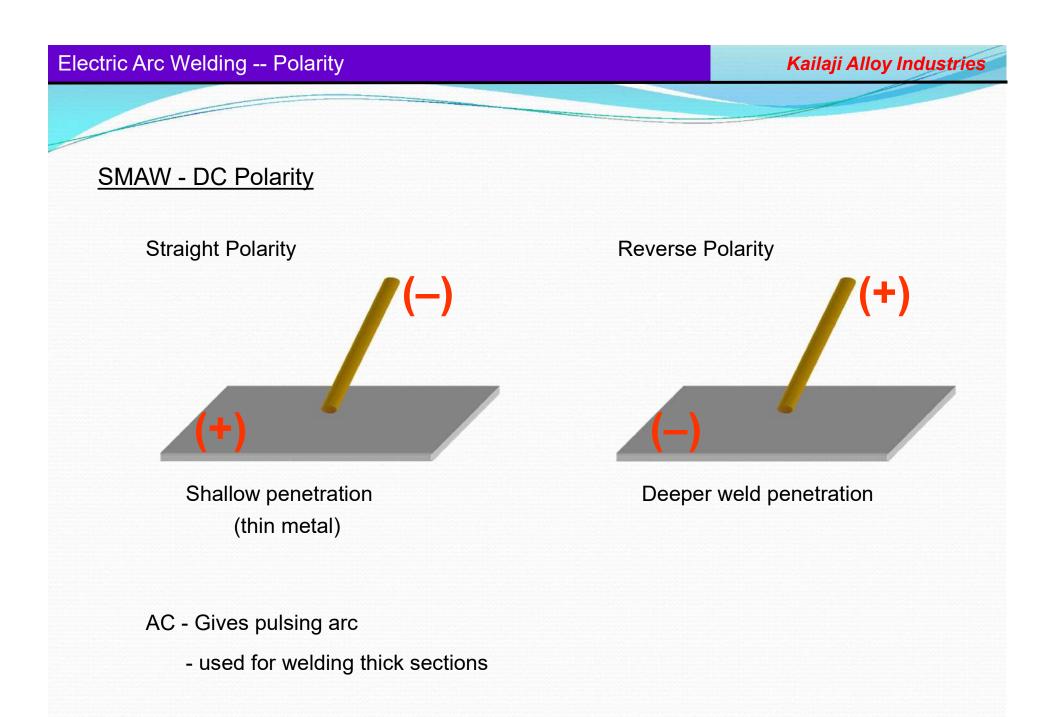
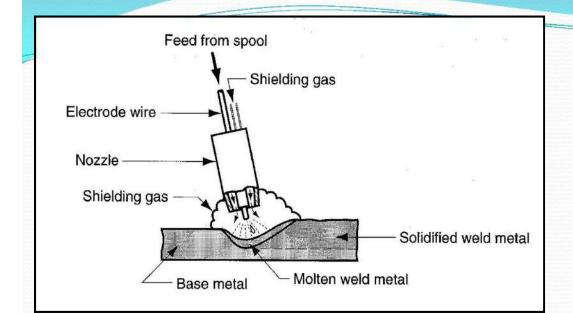
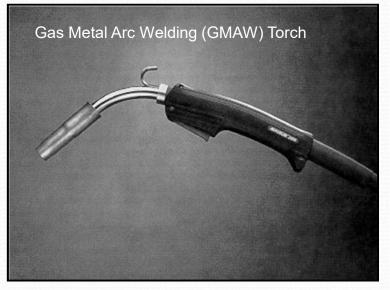



Fig. 6


- General purpose welding—widely used
- Thicknesses 1/8" 3/4"
- Portable

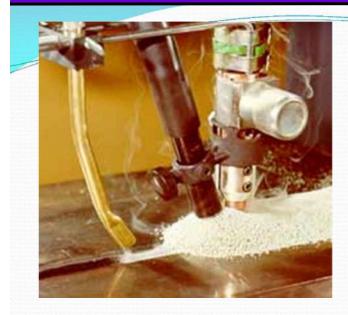
Power... Current I (50 - 300 amps) Voltage V (15 - 45 volts) Power = VI \approx 10 kW

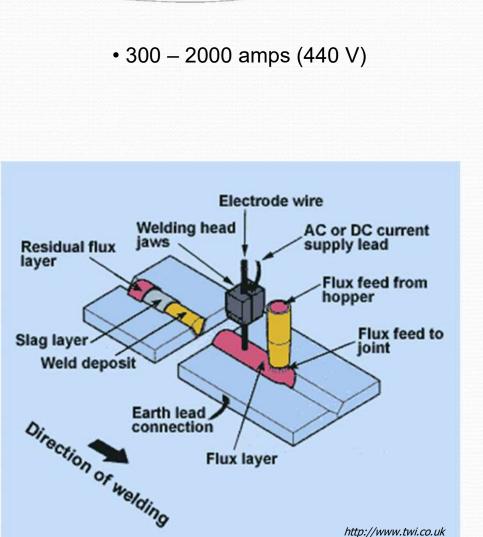
GMAW – Gas Metal Arc Welding (MIG) Welding Process


Kailaji Alloy Industries

• DC reverse polarity - hottest arc

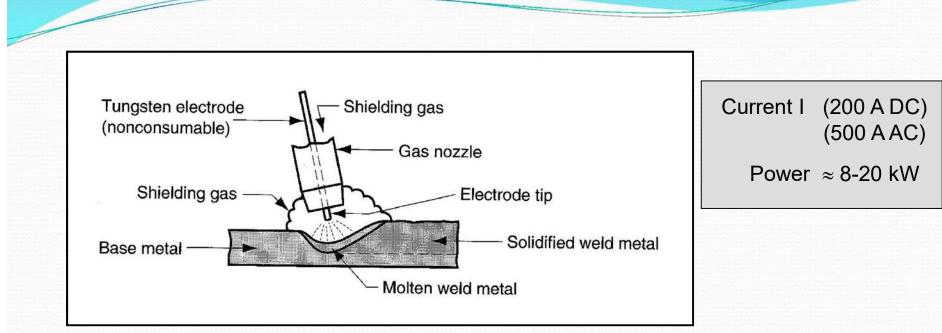
• AC - unstable arc


- MIG Metal Inert Gas
- Consumable wire electrode
- Shielding provided by gas
- Double productivity of SMAW
- Easily automated


Groover, M., Fundamentals of Modern Manufacturing,, p. 734, 1996

SAW – Submerged Arc Welding

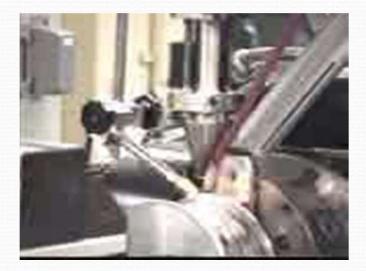
Kailaji Alloy Industries


- Consumable wire electrode
- Shielding provided by flux granules
- Low UV radiation & fumes
- Flux acts as thermal insulator
- Automated process (limited to flats)
- High speed & quality (4 10x SMAW)
- Suitable for thick plates

http://www.twi.co.uk

GTAW – Gas Tungsten Arc Welding (TIG)

Kailaji Alloy Industries


- a.k.a. TIG Tungsten Inert Gas
- Non-consumable electrode
- With or without filler metal
- Shield gas usually argon
- Used for thin sections of AI, Mg, Ti.
- Most expensive, highest quality

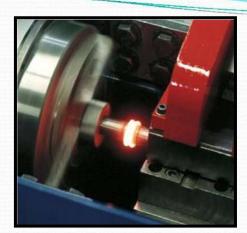
Laser Welding

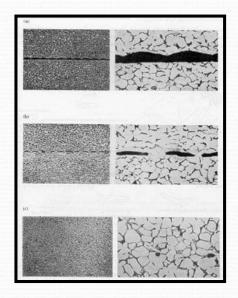
Kailaji Alloy Industries

- Laser beam produced by a CO2 or YAG Laser
- High penetration, high-speed process
- Concentrated heat = low distortion
- Laser can be shaped/focused & pulsed on/off
- Typically automated & high speed (up to 250 fpm)
- Workpieces up to 1" thick

Typical laser welding applications :

- Catheters & Other Medical Devices
- •Small Parts and Components
- •Fine Wires
- Jewelry
- Small Sensors
- •Thin Sheet Materials Down To 0.001" Thick

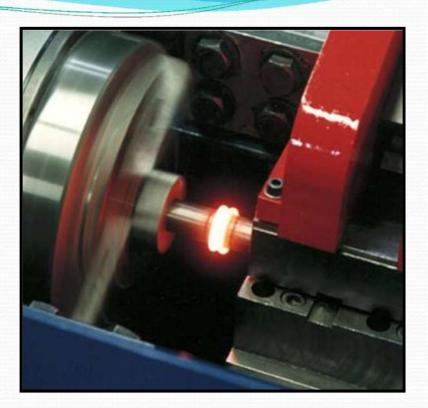

Solid State Welding Processes


Friction Welding

Diffusion Welding

Ultrasonic Welding

Resistance Welding

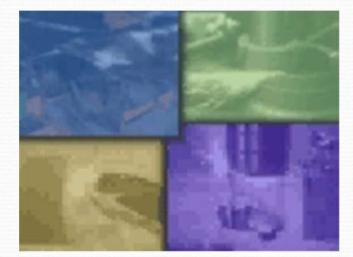


Kailaji Alloy Industries

Friction Welding (Inertia Welding)

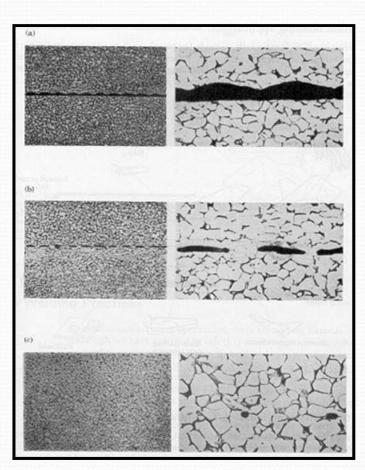
- One part rotated, one stationary
- Stationary part forced against rotating part
- Friction converts kinetic energy to thermal energy
- Metal at interface melts and is joined
- When sufficiently hot, rotation is stopped & axial force increased

Resistance Welding is the coordinated application of electric current and mechanical pressure in the proper magnitudes and for a precise period of time to create a coalescent bond between two base metals.


- Heat provided by resistance to electrical current (Q=I²Rt)
- Typical 0.5 10 V but up to 100,000 amps!
- Force applied by pneumatic cylinder
- Often fully or partially automated
 - Spot welding
 - Seam welding

Resistance Welding

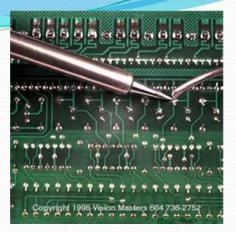
Resistance Welding is the coordinated application of electric current and mechanical pressure in the proper magnitudes and for a precise period of time to create a coalescent bond between two base metals.


- Heat provided by resistance to electrical current (Q=I²Rt)
- Typical 0.5 10 V but up to 100,000 amps!
- Force applied by pneumatic cylinder
- Often fully or partially automated
 - Spot welding
 - Seam welding

Diffusion Welding

- Parts forced together at high temperature (< 0.5Tm absolute) and pressure
- · Heated in furnace or by resistance heating
- Atoms diffuse across interface
- After sufficient time the interface disappears
- · Good for dissimilar metals
- Bond can be weakened by surface impurities

Kalpakjian, S., Manufacturing Engineering & Technology, p. 889, 1992


Kailaji Alloy Industries

Soldering & Brazing

Kailaji Alloy Industries

Soldering & Brazing

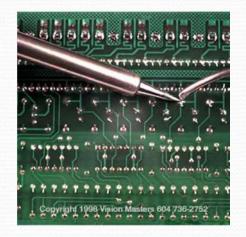
- Only filler metal is melted, not base metal
- · Lower temperatures than welding
- Filler metal distributed by capillary action
- Metallurgical bond formed between filler & base metals
- Strength of joint typically
 - stronger than filler metal itself
 - weaker than base metal
 - gap at joint important (0.001 0.010")
- Pros & Cons
 - Can join dissimilar metals
 - Less heat can join thinner sections (relative to welding)
 - Excessive heat during service can weaken joint

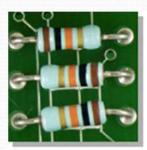
Soldering

Soldering

- **Solder** = Filler metal
 - Alloys of Tin (silver, bismuth, lead)
 - Melt point typically below 840 F

Flux used to clean joint & prevent oxidation


• separate or in core of wire (rosin-core)

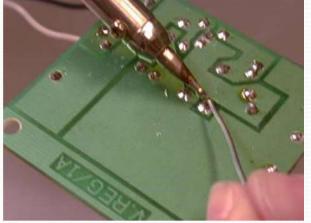

Tinning = pre-coating with thin layer of solder

Applications:

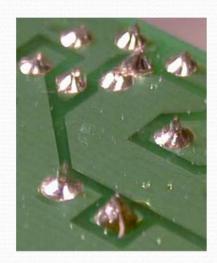
- Printed Circuit Board (PCB) manufacture
- Pipe joining (copper pipe)
- Jewelry manufacture
- Typically non-load bearing

Easy to solder: copper, silver, gold Difficult to solder: aluminum, stainless steels (can pre-plate difficult to solder metals to aid process)

PCB Soldering


Kailaji Alloy Industries

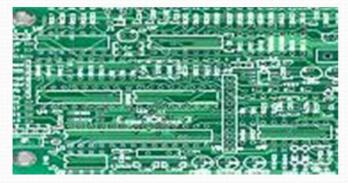
Manual PCB Soldering



- PTH Pin-Through-Hole connectors
- Soldering Iron & Solder Wire

Heating lead & placing solder

• Heat for 2-3 sec. & place wire opposite iron



Trim excess lead

PCB Reflow Soldering Kailaji Alloy Industries Automated Reflow Soldering SMT = Surface Mount Technology

• Solder/Flux paste mixture applied to PCB using screen print or similar transfer method

- Solder Paste serves the following functions:
 - supply solder material to the soldering spot,
 - hold the components in place prior to soldering,
 - clean the solder lands and component leads
 - prevent further oxidation of the solder lands.

Printed solder paste on a printed circuit board (PCB)

• PCB assembly then heated in "Reflow" oven to melt solder and secure connection

Brazing

Brazing

Use of low melt point filler metal to fill thin gap between mating surfaces to be joined utilizing capillary action

- Filler metals include Al, Mg & Cu alloys (melt point typically above 840 F)
- · Flux also used
- Types of brazing classified by heating method:
 - Torch, Furnace, Resistance

Applications:

- Automotive joining tubes
- Pipe/Tubing joining (HVAC)
- Electrical equipment joining wires
- Jewelry Making
- · Joint can possess significant strength

Figure 7. Typical brazed pipe/tube applications. (Photo courtesy of Handy & Harman)

Figure 11. Typical brazing filler metal preforms. (Photo countesy of Handy & Harman)

Brazing

Brazing

Use of low melt point filler metal to fill thin gap between mating surfaces to be joined utilizing capillary action

- Filler metals include AI, Mg & Cu alloys (melt point typically above 840 F)
- Flux also used
- Types of brazing classified by heating method:
 - Torch, Furnace, Resistance

Applications:

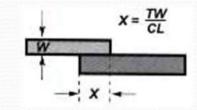
- Automotive joining tubes
- Pipe/Tubing joining (HVAC)
- Electrical equipment joining wires
- Jewelry Making
- Joint can possess significant strength

Figure 9. Typical carbide outting tools brazed to metal in a brazing furnace. (Photo courtesy of Handy & Harman)

Brazing

Figuring length of lap for flat joints.

- X = Length of lap
- T = Tensile strength of weakest member
- W = Thickness of weakest member
- C = Joint integrity factor of .8
- L = Shear strength of brazed filler metal

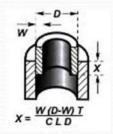

Let's see how this formula works, using an example.

Problem: What length of lap do you need to join .050" annealed Monel sheet to a metal of equal or greater strength? Solution:

C = .8 T = 70,000 psi (annealed Monel sheet)

W = .050"

- L = 25,000 psi (Typical shear strength for silver brazing filler metals)
- $X = (70,000 \times .050) / (.8 \times 25,000) = .18$ " lap length



Kailaji Alloy Industries

Brazing

Figuring length of lap for tubular joints.

- X = Length of lap area
- W = Wall thickness of weakest member
- D = Diameter of lap area
- T = Tensile strength of weakest member
- C = Joint integrity factor of .8
- L = Shear strength of brazed filler metal

Again, an example will serve to illustrate the use of this formula. Problem: What length of lap do you need to join 3/4" O.D. copper tubing (wall thickness .064") to 3/4" I.D. steel tubing?

Solution:

W = .064"

D = .750"

C= .8

- T = 33,000 psi (annealed copper)
- L = 25,000 psi (a typical value)
- X = (.064 x (.75 .064) x 33,000)/(.8 x .75 x 25,000)

X = .097" (length of lap)